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A turbulent mixing layer constrained by a solid surface. 
Part 1. Measurements before reaching the surface 

By D. H. W O O D ~ A N D  P. BRADSHAW 
Department of Aeronautics, Imperial College, London 

(Received 14 November 1981 and in revised form 10 May 1982) 

Extensive single- and two-point measurements have been made in a high-Reynolds- 
number single-stream mixing layer growing to encounter a wind-tunnel floor on its 
high-velocity side. The measurements include detailed conditionally sampled results, 
which separate the turbulent and irrotational contributions to the two-point 
covariances. These measurements show that the true (vorticity-bearing) large-scale 
structure in the isolated mixing layer, well away from the region influenced by the 
floor, is three-dimensional without a trace of the two-dimensional orderly structure 
found in some two-stream mixing-layer experiments. The structure appears to be a 
combination of the classical mixing jet and double-roller eddy (Grant 1958) ; the 
circulation in the latter is confined almost exclusively to the (z, 2)-plane. The large 
spanwise scales in the potential motion are attributed to the effect of pressure 
disturbances and not to two-dimensionality of the turbulent structure, as claimed 
by previous workers. The first effect of the wall is to stretch the streamwise and 
spanwise scales of the large eddies. Near the high-velocity edge 2 is amplified more 
than 2. The surprising result that the low-wavenumber (large-eddy) contribution 
to 2 is amplified across the whole layer is associated with the nature of the mixing 
jets and the alteration of the pressure field by the wall. The change in turbulence 
structure occurs before any significant change in the mean-velocity profile, and the 
implications for the calculation of the change in boundary conditions are discussed. 
The measurements made after the mixing layer reached the wind tunnel floor will 
be presented in part 2. 

1. Introduction 
This paper is one of a series on ‘complex’ turbulent flows, defined as shear layers 

with complicating influences like distortion by extra rates of strain or interaction with 
another turbulence field. General reviews of complex flows are given by Bradshaw 
(1975, 1976). This paper is a companion study to that of Weir, Wood & Bradshaw 
(1981 ; hereinafter denoted by WWB) who measured the interacting turbulent mixing 
layers in a plane jet. 

It is well known that the presence of a solid surface has a large effect on shear-layer 
structure. For computational purposes it is often necessary to distinguish between 
unbounded, ‘free ’ shear layers, far away from a solid surface, and well-bounded flows, 
or ‘wall layers’ for short. For example, any representative lengthscale of the 

t Present address : Department of Mechanical Engineering, University of Newcastle, N.S.W. 
2308, Australia. 
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turbulence close to a solid wall must vary as the distance from the surface, but the 
scale is roughly constant across a free shear layer or across the outer part of a wall 
layer. Furthermore, the modelling of the unmeasurable pressure-strain term in the 
shear-stress transport equation must be altered significantly near a solid wall (e.g. 
Bradshaw 1973; Launder, Reece & Rodi 1975). Many important flows involve a 
change in species from a free shear layer to a wall layer and there have been many 
studies of flow over backward-facing steps (Chandrsuda & Bradshaw 1981 and 
references therein) and of impinging jets (e.g. Gutmark, Wolfstein & Wygnanski 1978 
and references therein). However, it  is difficult to separate the effects of the change 
in boundary conditions from the effects of recirculation and streamline curvature 
(Castro & Bradshaw 1976) in these experiments, and no detailed study has been made 
in a flow that remains a plane shear layer while it experiences the influence of a wall. 
The growth of a plane mixing layer to reach the wind-tunnel floor,? as shown in figure 
1, is the simplest possible realization of such a flow, provided that the inevitable floor 
boundary layer remains negligibly thin. The mixing layer in this study was a 
single-stream layer in ‘still air’ (i.e. room air). 

There is considerable controversy over the structure of a turbulent mixing layer; 
principally over the two-dimensionality or otherwise of the large eddies. Statements 
of the opposing views can be found in Roshko (1976) and Bradshaw (1980). The 
correlation measurements in 94 support the main conclusion of Chandrsuda et al. 
(1978), admittedly based on measurements in the same rig, that the quasi-two- 
dimensional large eddies, formed during transition, persist only in the absence of a 
mechanism to cause breakdown to three dimensionality. 

It is to be expected that the effect of the wall on the large-eddy structure is to 
stretch the scales in the plane of the wall and to transfer turbulent energy from the 
normal component 3 into s and 3. The high- and low-Reynolds-number experi- 
ments of Thomas & Hancock (1978) and Uzkan & Reynolds (1967) respectively, 
on grid turbulence constrained by a solid wall moving at the free-stream velocity, 
showed that the influence of the ‘no-slip’ or ‘viscous’ constraint, that is 
U = W = u = w = 0 at the wall, was confined to a viscous region whose thickness 
is of the order of that of a laminar boundary layer. In  the present experiment the 
viscous region is embedded in the thin floor boundary layer. Outside this region 
Thomas & Hancock found that 2 was amplified at the expense of 3. Obviously 
V = v = 0 at  the wall by the ‘image ’ or impermeability constraint, which, in contrast 
to the no-slip condition, affects the fluctuations out to a distance from the surface 
of the order of the wavelength of the large eddies. ‘Inactive’ motion in a turbulent 
boundary layer (Townsend 1961 ; Bradshaw 1967), which contributes to the u- and 
w-motion but not to the v-motion or to the shear stress, is caused by the same 
mechanism. Thomas & Hancock found that 3 was not significantly amplified, in 
disagreement with the rapid-distortion theory of Hunt & Graham (1978) for 
turbulence that is axisymmetric about the vertical axis, and the large-eddy simulation 
- of Biringen & Reynolds (1981). Both these analyses predict equal amplification of 
ua and 3, as does the simple theory of Wood & Ferziger (1982 ; hereinafter denoted 
by WF) for the potential flow in figure 1 .  Normal stresses presented in WF are in 
similar disagreement with the theory. 

To the accuracy of neglecting the viscous constraint, which affects only the wall 
boundary layer, the present flow can be considered as the instantaneous interaction 

t Convention forces us to equate ‘floor’, ‘wall’ and ‘surface’. 
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FIQURE 1. Schematic diagram of test rig. All dimensions in cm. 

of a turbulent mixing layer with its mirror image. The initial region of a plane jet 
was studied by WWB as the interaction of a mixing layer and its ‘image’ about the 
centreline, having the same mean, but not instantaneous, properties as the ‘real ’ 
layer. 

Section 2 briefly describes the experimental techniques and data reduction. The 
conditional-sampling routines, in particular the extension to two-point (correlation) 
measurements, are described in the appendix. Some of the single-point and two-point 
measurements taken from Wood (1980), where the experimental techniques are fully 
described, are presented in $53 and 4 respectively. The experimental results are 
available on digital tape from either author; those taken after the mixing layer 
reached the floor are described in part 2. 

2. Experimental techniques 
All the measurements are made in a specially built working section fitted to a 

762 cm x 12.7 cm blower tunnel described by Bradshaw (1972). The free-stream 
velocity U, was 164f0.1 m s-l for all the measurements and the combination of 
free-stream turbulence and unsteadiness levels was 025 % a t  small 2. The working- 
section dimensions are shown in figure 1. Preliminary spanwise correlation measure- 
ments showed that the flow was not sensitive to a reduction to 30 cm in the height 
of the sidewalls, the insertion of a backplate above the contraction exit, or the 
installation of bellmouth fairings, like those shown in figure 1 of Wygnanski 6 Fiedler 
(1970), on the walls. 

After considerable thought and experimentation, described in Wood (1980, chap. 
3), we decided not to remove the floor boundary layer. 

Total pressure was measured by a round Pitot tube of outside diameter d = 1 or 
1.2 mm, and the static pressure was taken as atmospheric. The results were corrected 
by assuming that the effective centre was displaced by 015 d in the direction of the 
mean shear. From the repeatability of the results in figure 2 the accuracy of the 
measurements is estimated at 1 % of 17,. Standard hot-wire techniques were used. 
X-wire probes were calibrated statically in the potential core assuming a ‘cosine-law ’ 
response to yaw, with the effective angle determined by calibkation. Tests over a yaw 
range of 15O to 75O (45f30° ftom the x-axis), reported in Wood (1980), showed tliis 

FLY 122 3 
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procedure to be an excellent approximation. The hot-wire signals were simultaneously 
recorded on an Ampex FR 1300 analog tape recorder using an effective bandwidth 
of 1 Hz-10 kHz. The data were subsequently transcribed onto digital tapes for batch 
processing, including linearization, on the Imperial College computer, using the 
equipment and two-channel (single-point) program described by Weir & Bradshaw 
(1974). The large amount of computer time needed to analyse the data prevented the 
use of wholly satisfactory averaging times for the single-point measurements in $3. 
The time was, typically, 15 s of real time and was increased slightly with increasing 
x. Some of the scatter in the present results, especially in the u-component 
measurements, is attributable to the short averaging times used. The averaging time 
for the correlation measurements was typically 8 s, and the repeated points shown 
in the present results, usually at  minimum separation, show that this was satisfactory. 
The accuracy of the total correlations is estimated as k0.05, unless stated otherwise. 

Two special programs were written to analyse the present data. The first computed 
the spectra (and then the autocorrelations as the inverse Fourier transforms of the 
spectra) from selected single-point data, and the second analysed the four-channel 
(two-point) data. Details of the first are not important here. However, we are not 
aware of any previous extension of single-point conditional sampling techniques to 
two-point measurements, so the details of the program are given in the appendix. 
More details of the experimental details and data-reduction techniques are given in 
Wood (1980). Notation is explained in the appendix. 

3. Single-point results 
3.1. Initial conditions and mean-velocity projiles 

All the single-point measurements were taken along the midspan of the tunnel. The 
mean velocity in the initial boundary layer, measured just upstream of the lip, was 
reasonably close to the Blasius profile with a 99% thickness of 2 4  mm. The 
momentum thickness 8, was 030 mm. The effective origin xo of the self-preserving 
mixing layer was found to be at x = -68 cm, that is, upstream of the lip as is the 
general case for initial laminar boundary layers. The mean-velocity profiles are shown 
in figure 2. Self preservation is achieved at  roughly x = 45 cm, where x/8, = 1500 and 
Re, = U,x/v = 4 8  x lo5. This agrees with the criterion of x/B, > lo3 of Bradshaw 
(1966), but not .with his alternative suggestion that Re, > 7 x lo6. The spreading rate 
is about 5% less than that measured by Castro (1973) in the same wind tunnel at 
double the present U,.  Birch’s (1980) survey recommends a value of L = 0115 (x-x,) 
for single stream mixing layers. L is the distance between the points where U = 40.9 
U, and 40.1 U,.  The present value is L = 0103 (x--2,). The estimated thickness 6, 
defined as the distance between the points where U = 0995 U ,  and 0.005 U ,  isgiven 
by 6 = 022 (x--2,). If anything, this low value of the spreading rate suggests that 
the present flow is subject to a minimum of external disturbances, such as flapping 
caused by intermittent alighting on the floor, which would increase 6 and L. The 
presence of the wall does not alter the mean-velocity profile shape. Some spanwise 
non-uniformity in U was found. It appears to correlate with the spanwise non- 
uniformity of the initial boundary layer ; it is a maximum around x -xo = 36 cm, and 
then decreases in magnitude roughly as (z-z0)-l. The reasons for this are explored 
in Wood (1982). 
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FIQURE 2. Mean-velocity profiles. 0, s--2, (cm) = 1356; 0 , 2 6 4 9 ;  A, 39.03; +, 51.83; x , 6459;  
0, 77.29. Flagged symbols are repeated measurements. 

3.2. Turbulence measurements 

The measurements of y (see appendix) are shown in figure 3. The single-point values 
are generally slightly lower than those from the two-point measurements, probably 
because of the different hold times At, as explained in the appendix. y also decreases 
slightly with increasing x .  This behaviour is believed to be genuine because At@, 
increases with x and so would increase the measured y if the interface statistics 
remained unaltered. 

The downstream development of the normal stresses is shown in figure 4, together 
with the distributions from Castro (1973), which Rodi's (1973) survey concluded are 
reliable data. The rise in 2 with z near the high-velocity edge for x > 62 is partially 
caused by the increasing level of potential fluctuations in the diminishing potential 
core. WF show that the potential flow is unaffected by the wall, over the measured 
range of 7, for x < 24 cm. For example, at  71 = -0051, ';E" increases by a factor of 1.8 
between 24 and 100 cm. Over this distance (1 - y )  gN, which contributes 20 % to u2 a t  
24 cm, increases by nearly 2.7 times, while yGT increases by a factor of nearly 1.6.t 
Away from this region the results are self-preserving to within the accuracy of 
measurement. However 3 is self-preserving only for the first three stations. After 
50 cm it increases across the whole layer, a result repeated in later checks in another 
test rig. This totally unexpected behaviour occurs when S/h < 0 8 .  The only previous 

- 

t Here (1 -y)GN and y q  are the non-turbulent (N) and turbulent (T) contributions to 7 as 
defined by the addition law of equation (A 1 )  of the appendix. 

3-2 
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FIQURE 3. Intermittency factor. Nominal 0,  z-zo (cm) = 24; 0 , 3 6 ;  A, 76. Left and right facing 
flagged symbols from normal and spanwise correlations respectively. Unflagged symbol6 are' 
single-point results. Solid line from Castro (1973), z-zo = 56 cm. 

-0.10 -0.06 -0.02 0.02 0.06 0.10 
17 

FIQU~B 4. Normal-stress profiles. 0,  z-zo (cm) = 2405; 0 , 3 6 8 9 ;  A, 4951 ; + , 62.32; x , 7506; 
0, 100.3. Dashed line from Castro (1973), z-zo = 56 cm. 
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FIGURE 5. #11 and #81 at z-zo = 3689 cm. 0 , ~  = 0117; 0,  -0052; A, +0018. Unfilled symbols 

investigation we could find where 3 was measured at more than one station in a 
geometry similar to figure 1 was that of Wygnanski & Fiedler (1970). Their 
measurements were limited to the region where 6 / h  > 0 8  and do not show an increase 
in 2 with x .  In  contrast, the 3 result remain self-preserving except for a slight rise 
near the high-speed side (see also figure 8 of WF) which occurs for the same reason 
as the rise in 2. 

The strongest reason for believing the rise in 3 to be at least qualitatively genuine, 
and not due to experimental error, is the evolution of the spectra shown in figures 
5 and 6. The non-dimensional spectral density, defined as 

where 

is plotted against the non-dimensional radian frequency 

for i = 1,  2. At 37 cm, where S/h < 0.8, the spectra are unremarkable. At 7 = + 0018, 
#11 has an extensive inertial subrange and is very similar in shape to Castro's (1973) 
analog spectra at 7 = 0. Assuming that at this 7 convection velocity is equal to the 
local mean velocity and that the constant a in the inertial-subrange law 

(1) 
- 

ml1(kl) = u2$11(kl) = a&;%, 
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FIQURE 6. $11 and $23 at 2-2, = 7 5 0 6  cm. 0, 7 = -0104;  0, -0050; A, +0014. Unfilled 
symbols are $ll. Dashed lines from figure 5. 

where k, is the wavenumber and e is the dissipation (strictly the energy-transfer rate), 
is given by a = 050 (Townsend 1976, p. 99), we obtain a value of 00916 for the 
dissipation length parameter L, = ( U Z ) ) ~ / E .  This value is close to that found by Castro 
(1973) and to the value L,/S = 0.10 used in the reasonably successful calculations of 
WWB. Figures 5 and 6 also show the isotropic relation fDZ2(w) = &(o) for the 
inertial subrange, which is discussed further in $5. 

Figure 6 shows the spectra at 75 cm with the results near maximum y from figure 
5 shown as the dashed lines; 422 has been scaled by the ratios of 2 a t  37 and 75 cm. 
q511 has developed a slight peak around o' = 3.6 and the change in #33 (the results 
are not shown here) is very similar. However, the peak in q522 near this frequency has 
been amplified significantly and the comparison with the results of figure 5 shows that 
this - gain in spectral density, which is independent of 7, is responsible for the rise in 
v2. If we assume that the convection velocity does not alter appreciably with x, then 
the peak in 422 is centred around k6 x 1. The peak wavenumber must be too large 
to amplify 2 by 'shaking' the mean-velocity gradient. Further discussion of 3 is 
delayed until $ 5 ,  since we need the information about the large-eddy structure 
deduced from the correlation measurements in $4. 

The measurements of UZ) are given in figure 7, together with the self-preserving 
distribution calculated from figure 2. The error in the measured values, about lo%, 
is similar to that found in previous studies e.g. Castro (1973), Pui & Gartshore 
(1979) and Browand & Latigo (1979). The shear-stress correlation coefficient 
R,, = uv/(u2v2)i, which is not shown here, reflects the behaviour of 3; R,, reaches 
a maximum of 0.52 at 50 cm, a similar value to that found by Bradshaw, Ferriss & 
Johnson (1964) in an axisymmetric mixing layer, and then decreases. 

The most spectacular effect of the increasing level of potential fluctuations is the 
evolution of the flatness factors near the high-velocity edge (figure 8). The effects of 
the potential fluctuations can be demonstrated as follows, using F, as an example. 

- __ 
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FIGURE 7. Shear-stress profiles. Symbols as in figure 4. 

By definition and using the addition law, equation (A l ) ,  we have 

- -  
Assuming that U & / ( U & ) ~  x 3, which from figure 8 is a good approximation near 

maximum y ,  and that pN/(GN)2 x 3, as in the outer potential flow (the results are 
not shown here), gives 

(3) 
Y + (1 -Y) CGl4Y 
[Y + (1 - Y) (G/G!)I2. F, x 3 

There are two limits to (3), namely 

F, + 3 when either 

- 
UK 

4 
or =+ 1. 

and 

Equation (4) is the conventional limit, which has been widely used to estimate y 
in the past. Corrsin & Kistler (1955) point out restrictions on its validity similar to 
those discussed here. The limit of (5a) applies to any flow for sufficiently small y and 
is the reason why F, does not increase monotonically with distance away from the 
flow. The importance of the limit (5b)  is that F, is independent of y. Equations (4) 
and (5) are plotted in figure 8, using y for 37 cm from figure 3. Initially F, follows 
(4) more closely than does F,, as 2 decreases more quickly than 3 with decreasing 7 
at 37 cm. However figure 8 of W F  shows that, at  constant 7 in the potential core, 
u2 increases more rapidly with x than does 3, in agreement with the more rapid 
approach of F, to (5) than of F,. Although not shown here, Fw at 37 cm follows (4) 

- 
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FIGURE 8. Flatness-factor profiles. Symbols as in figure 4. (a) u-component; jb) v-component. 

over a larger range of 7 than does F,, as 3 is the smallest of the normal stresses in 
the potential flow (figure 9 of WF). The decrease in F, with increasing x is 
intermediate between that of F, and Fv, as the amplification of the potential 9 is 
intermediate between that of 2 and 2. 

The behaviour of the triple products is most conveniently described in terms of 
the transport velocities for the shear stress and turbulent energy. Before doing this 
we briefly describe the main changes in the measured triple products. Near the 
high-velocity edge, 2 decreases markedly in magnitude as x increases. However, 3, 
whose gradient appears in the diffusion term for the turbulent energy, increases in 
magnitude over the whole layer, as does 2. Both &J and are self-preserving to 
within the experimental accuracy of 20 yo. The transport velocities for turbulent 
energy and shear stress are 

- -  F+ki ,  J , r =  p u  - + uv2 
@ UV 

v, = 
_ _ _  

respectively, where p is the kinematic fluctuating pressure and = u2 + v2 + w B  is 
twice the turbulent kinetic energy. Measurements at  37 cm showed that w221 x 020  
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. Turbulent-energy transport velocity. Symbols as in figure 4. Flagged sym-ols are Vi, T. 
Equation ( 6 b )  at: -, z-zo (om) = 2405; ---, 02.32; --, 100.3. 

_ -  
(u2v+v3) to a good approximation across the whole layer. Figure 9 shows V;, the 
measured approximation to V,, defined, neglecting the pressure term entirely, as 

1.2 (u2v + 3) 
u +2+2* 

V; G 

The limiting behaviour of V i  can be inferred from the turbulent energy equation, 
which reduces to advection + diffusion x 0 near the high-velocity edge (see figure 23). - 

In  similarity form we have . 
fp f p V  
@ *  

( V - q U ) - + -  x 0. 

In this region U x U,  and V x 0, so (6a) can be integrated between 7, and q2 to give 

Letting qI + - 00 shows that V, + q U,  if? decreases sufficiently rapidly for the second 
term in (6 b)  to be negligible. It is obvious that V i  does not tend to q U, even at 24 cm ; 
the reason is the behaviour of the second term. Equation (6b) was evaluated using 
both the measured ? distribution and V i  at the value q2 indicated. The calculations, 
shown as curves in figure 9, reproduce the trend of the experimental results and justify 
the neglect of streamwise diffusion in (6b ) .  The variation of V i  with x, due to the 
increasing level of potential fluctuations decreasing the rate of decay of? near the 
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high-velocity edge, is much less than the change in the flatness factors. It is more 
difficult to interpret V i  in terms of the addition law as there is no general 
simplification similar to that used in obtaining (4) and (5). Over the measured range 
of y ,  q2v, is always much less than yq2vT. If we assume that q2vN is always negligible 
- __. - 

then 

Equation (7) also has two limits, namely 

-- 
where Vi,  are shown as the flagged 
symbols in figure 9. A t  all z, the measured Vi ,  follow (8a)  out to 7 x -0030, which 
is also the approximate limit to the validity of (4) for F, ; 2 is the largest component 
of 7. However, it is not possible to check the accuracy of both (8a)  and ( 8 b ) ,  
particularly as V i  is not constant. 

A simplification like (6a) is not valid for the shear-stress transport equation near 
the high-velocity edge, because the pressure-strain term remains of the same order 
as the transport term. However, V, should be less influenced by potential-flow effects, 
not because & tends to zero, but because its rate of decay with decreasing 7 is larger 
than that of?. WF show that, in general, is not zero in potential flow ; in the present 
flow R,, passes through zero a t  7 x - 0090 and is then negative at z > 25 cm (figure 
10 of WF). V i  = uw2/uv, the measured approximation to V,, is shown in figure 10. 
The rapid decrease in makes V i  less accurate than V i  near the high-velocity edge 
and may be the explanation for the results at 100 cm, as V; otherwise is self-preserving. 
On average, the ratio V i /  V i  is 2.5, which is lower than the value of 3.3 found by WWB 
and by Smits, Young & Bradshaw (1979) in their boundary-layer measurements. 

= q2vT/q& The available measurements of Vi ,  

-- 

4. Two-point measurements and autocorrelations 
From continuity, there can be no net flux of the fluctuating i-component velocity 

u1 across the (j, k)-plane normal to the i-direction, so the covariance ut, A ~ t ,  (where 
the subscripts A and B refer to the fixed and moving wires respectively) must 
integrate to zero over the (j, k)-plane. Hence the correlation must have a negative 
region somewhere in the plane. This negative region, which indicates ‘ backflow ’, need 
not occur close to either of the coordinate axes, which were the only directions of 
separation measured here, but the result is useful in deducing the eddy structure. The 
method used here to deduce the eddy structure is essentially the same as that used 
by Grant (1958), Bradshaw et al. (1964) and Townsend (1976, especially pp. 118-120). 
We simply look for an ‘average’ large-eddy shape that will explain the signs of the 
correlations at separations of the same order as the shear-layer thickness. The reader 
interested in conclusions rather than details can omit $4.1. To avoid confusion, the 
terms ‘ streamwise ’, ‘ normal ’ and ‘ spanwise ’ are used throughout to describe 
separation in the z-, y- and z-directions respectively. 

WF show that the potential-core measurements at 25 cm were the only ones free 
of wall influence. By inference, the turbulence structure at  this station was also 
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FIGURE 10. Shear-stress transport velocity. Symbols as in figure 4. 

unaffected by the wall, but the mean-velocity profile was not fully developed (figure 
2). The most extensive correlation measurements were made at 37 cm, the station 
considered to give the best compromise between the approach to full development 
and the onset of wall effect. The results of $3 show that the differences in the single-point 
results between 24 and 37 cm are small. Furthermore, the detailed correlation 
measurements at  24 cm, given in Wood (1980) but not here, show no significant 
differences from those at 37 cm when the non-dimensional separation r / (x-x0)  is 
used. It is concluded that the correlation measurements at 37 cm are representative 
of a fully developed mixing layer in the absence of wall effect. With the exception 
of 2, the wall effect on the single-point results occurs only on the high-velocity side, 
so the correlation measurements were limited to r] G +0-025. 

4.1. Correlations in the absence of wall effect ( x  = 37 mm) 
These are presented in the order ‘spanwise’ (z) ,  ‘normal’ (y) ‘streamwise’ ( x )  (i.e. 
(0, 0, r), (0, r,  0) and (r,  0 , O )  respectively in the usual notation for correlation 
separations), followed by the intermittency correlations and the conditionally 
sampled (‘ spanwise ’) correlations. 

For r] 2 -0.040, R,,(O, 0, r )  (figure 11) has a negative loop that varies little in 
position or size, the most negative value being about -010; for r ]  < -0051, 
R,,(O, 0, r )  is always positive and the scale increases rapidly with decreasing 7. 
Townsend’s (1976) definition of correlation scale is used here; i t  is either the position 
of R, = 005 if R, is always positive, or the crossover point after the negative region, 
if any. The spanwise scales in the high-intensity region are 068 for R,,(O, 0, r )  and 
1-58for R,,(O, 0, r )  (figure 12). The latter correlation is always positive but its increase 
in scale with decreasing r ]  (and y )  is less than that for R,,(O, 0, r ) .  Figure 13 shows 
that R,,(O, 0, r), which is equal to R,,(O, 0, r )  in two-dimensional flows, is similar to 
R,,(O, 0, r). R,,(O, 0, r )  (figure 14), has a negative region even though it is a 
‘longitudinal ’ correlation. In the high-intensity region the negative peak is about 
- 005. The crossover point moves outward with decreasing r] and the negative peak in- 
creases in magnitude, reaching -0.14 in the potential flow, as indicated on figure 14. 

As an example of the normal correlations, R,,(O, r ,  0) is shown in figure 15, with 
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RQURE 11.  Contour plot of R,,(O, 0, r )  at z-z0 (om) = 36.41 (unfilled) and 77-64 (filled). 0, 
R,,(O, 0, r )  = 0 8 ;  0, 0 6 ;  A, 0 4 ;  0 , 0 2 ;  D, 01 .  Negative region is shaded. R is defined in (A 3). 
0, Minima at 3641 cm ( x  -001); 0 ,  minima at 77-64 ( z -004). 
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FIQURE 12. Contour plot of R,,(O, 0, r )  at z-z0 (om) = 3641 and 77-64. Symbols t~ in figure 1 1 ,  
except 0 = 005. 
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FIQURE 13. Contour plot of R,,(O, 0, r )  at x-z,, (cm) = 36.41 and 77.64. Symbols aQd shading as 
in figure 11. 0 ,  Minima at 36.41 em (=  -0.01). x = +005 at 77.64 cm only. 

9 

FIQURE 14. Contour plot of R,,(O, 0, r )  at x - x o  (em) = 3641 and 77.64. Symbols and shading as 
in figure 11.  
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FIGURE 15. R,,(O, r,  0). x - z o  = 3689 cm: 0, 3 = -0099; 0, -0049; A, +0033. 
z-zo = 7514 cm: 0,  7 = -0050; A, +0003. Arrows indicate edge of shear layer. 

T 

-0117 
-0109 
- 0063 
- 0052 
+0016 
+0018 

-0108 
-0104 
- 0052 
- 0050 
+0014 

0155 0260 -026 
0110 0195 -009 

0160 0310 -008 0120 0260 -011 
0085 0170 -008 

0195 0430 -007 0120 0187 -008 

z - x o  = 7506 cm 

0180 0330 -055 0155 0310 -047 

0370 0720 -021 0300 0580 -026 
0320 0570 -013 0255 0.530 -023 

0175 0305 -035 

0.250 0480 -0.09 

0210 0350 -009 

TABLE 1.  Properties of ‘streamwise’ correlations. Values are r ’ / ( x - z o ) ,  where r’ = Uct at 
(a) crossover point and ( b )  position of negative peak. (c) is value of negative peak. 

the position of the fixed probe indicated. The vertical lines indicate the shear-layer 
edge, defined as the value of 7 for which U = 0995U,. Of the normal correlations 
not shown, R,,(O, r ,  0) is always positive and of larger scale than R,,(O, r ,  0) for the 
fixed probe at 7 = +0.03 and -0.049. R,,(O, r ,  0) is always positive, but R,,(O, r ,  0) 
is consistently negative when the moving probe is in the potential flow, although the 
accuracy of measurement is obviously low. 

The autocorrelations, generated from the spectra shown in figures 5 and 6, were 
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FIGURE 16. R I I ( O ,  0, r )  and RI,(O, r, 0 ) ;  seeequation (A 6) for definition. (a) Nominal z--zo = 36 cm. 
R I I ( O ,  0, r ) :  0,  7 = -0075; 0, -0051; A, -0026;. +, -001; x , +0023. R,,(O, r ,  0): 0, 
7 = -0049; V, +0002 .  Note that r is negative for correlations in y-direction. ( b )  Nominal 
-z--3 = 75 cm. R I , ( O ,  0, r ) :  0,  7 = -0.074; 0,  -0025; A, +0025. R I I ( 0 ,  r ,  0): +, 7 = -0050; 
x ,  +0003. 

converted into pseudo-streamwise correlations by using r’ = Vet ,  where U, is the 
convection velocity and t is the time delay. On the basis of the convection velocities 
measured by Bradshaw et al. (1964) and Wills (1964), U, was assumed to be either 
U(7)  for 7 > 0 or. U(7 = 0) for 7 < 0 for all components. These assumptions are 
somewhat arbitrary, especially since we are unaware of any U,  measurements for the 
w-component, but the conclusions based on the ‘ streamwise ’ correlations are not 
sensitive to the precise value of U,. A t  both 37 and 75 cm all the ‘streamwise’ 
correlations have negative regions, as would be expected from figures 5 and 6, 
emphasizing both the strong streamwise periodicity of the large eddies and that most 
of the backflow for v and w occurs on the x-axis. The position of the first crossover 
point and the position and size of the negative peak are given in table 1. 

The spanwise and normal correlations of the intermittency function (A 6) are shown 
in figure 16. The spanwise scale varies remarkably little with 7 and is nearly equal 
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FIGURE 17. Conditionally sampled spanwise correlations. x - x 0  = 36.14 cm, 7 = -0075. 0, Total 
correlation; V, turbulent/turbulent (TT) contribution; A, non-turbulent/non-turbulent (NN); 0, 
TN+NT. Dashed line is total correlation at 71 = -0124. (a)  R,,(O, 0, r ) ;  ( b )  R,,(O, 0, r ) .  

to the scale of' 1c,,(O, 0, r )  in the high-intensity region, suggesting that the increase 
in scale of R,,(O, 0, r ) ,  R,,(O, 0, r )  and all the single-component normal correlations 
for decreasing 7, is caused by the effects of the potential flow. The theoretical support 
for this statement is discussed in WF. 

Using the conditional sampling routines described in the appendix, the contribu- 
tions to  the total correlations were found (figures 17-20). The non-turbulent/turbulent 
(NT) and turbulent/non-turbulent (TN) contributions, which are nominally equal for 
spanwise separations, are shown together for clarity. A t  37 cm the most spectacular 
results, for 7 = -0075 (figure 17), show conclusively that the dominant contribution 
at large separations is from the potential ( N N )  motion. The scales of the turbulent (TT) 
motion are no larger than the scales of the total correlations in the high-intensity region 
for both R,,(O, 0, r )  and R,,(O, 0, r ) .  Unusually there is no negative loop in the TT 
contribution to R,,(O, 0, r ) ,  which is probably genuine in view of the similarity in 
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FIGURE 18. Conditionally sampled spanwise correlations. z-z,, = 3641 cm, 7 = +0023. Symbols 
as in figure 17.  (a) R,,(O, 0, r ) ;  ( b )  R,,(O, 0, r ) .  

shape of the NN contribution and the total (potential) correlation at q = -0124, 
which is also shown in figure 17. Of the other results (see Wood 1980) the TT 
contribution to Rll(O, 0, r )  at q = -0051 is still positive, while all three contributions 
to R,,(O, 0, r )  are roughly equal. About half of the negative loop in Rl,(O, 0, r )  at 
7 = -0026 is due to the turbulent motion, the rest being the sum of the NT and 
TN contributions. The contributions to R,,(O, 0, r )  at q = -0.026 and -001 and to 
R,,(O, 0, r) at q = -001 are very similar to those at q = +0023,  shown in figure 18. 
As expected, nearly all the total correlation at q = +0023, including the negative 
loop in R,,(O, 0, r ) ,  is due to the turbulent motion. Although not shown, the general 
similarity between R,,(O, 0, r )  and R,,(O, 0, r )  extends to the respective contributions, 
except that the sums of the NT and TN contributions to R,,(O, 0, r )  are small and 
negative for large separation at q = -0.051 and -0026. 

The major difference between the present spatial correlations at 37 cm and the 
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as in figure 17. Dashed line is TT from figure 17. (a) R,,(O, 0, r ) ;  (b)  R,,(O, 0, r ) .  
FIGURE 19. Conditionally sampled spanwise correlations. x-x,, = 77.64 cm, = -0074. Symbols 

axisymmetric results of Bradshaw et al. (1964) and Weber (1974) is the negative region 
in the present R,,(O, 0, r ) .  This negative region appears even in the high-intensity 
region, where the potential contribution to both R,,(O, 0, r )  and R,,(O, 0, r )  is 
negligible (figure 18), and so is due to the turbulent motion. Since the spanwise scale 
of the turbulent motion does not increase with decreasing p ,  the outward movement 
of the crossover point in R,,(O, 0, r )  with decreasing p is due to the potential motion. 
Bradshaw et al. (1964) suggested that the negative loop in R,,(O, 0, r )  was 'associated 
with the v-motion rather than the w-motion' largely because the negative peak in 
their R,,(O, 0, r )  decreased by a similar amount to the decrease in the peak of $,, as 
x increased. In the present flow the negative loop in R,,(O, 0, r )  decreased in 
magnitude and moved outward (compare figures 17 and 18), while $22 has developed 
a strong peak (figure 6). Thus it is not possible to interpret the present correlations 
exclusively in terms of Grant's (1958) mixing jets, which Bradshaw et al. (1964) 
considered were the dominant eddy structure in their flow. 
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FIQURE 20. Conditionally sampled spanwise correlation. z-zo = 77.64 cm, 9 = +0025. Symbols 
aa in figure 17. Dashed line is TT from figure 18. 

4.2. Large-eddy structure in the absence of wall effect 
The most economical interpretation of the present spatial correlations, although not 
the only one, is that the large eddies are horseshoe vortices or hairpin eddies as shown 
in figure 21 (a) .  In the high-intensity region, where R,,(O, 0, r )  has a negative loop, 
the horseshoe vortex looks like Grant’s (1958) double-roller eddy whose circulation 
is confined almost exclusively to the (2, %)-plane. This structure causes the negative 
loops in R,,(O, 0, r )  and R,,(O, 0, r ) ;  Grant considered the latter to be the strongest 
evidence for double-roller eddies. Superimposed on this structure is an ‘ outward ’ 
motion, away from the high-intensity region, primarily responsible for the R,,(O, 0, r )  
results. The reasons for assuming this superposition are (i) the striking similarity 
between R,,(O, 0, r )  and R,,(O, 0, r ) ;  (ii) the fact that the scale of the turbulent 
contribution to R,,(O, 0, T) is nearly half that to R,,(O, 0, r);  and (iii) the fact that, 
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FIGURE 21. (a) Schematic diagram of horseshoe eddy. ( b )  Effect on potential flow. 

although not shown here, the scale of the turbulent contribution to R,,(O, r ,  0) 
exceeds that to the other normal correlations. 

The outward motion joins the vortex lines of the double-roller eddy and removes 
the negative loop in the turbulent contribution to R,,(O, 0, r ) ,  (and, presumably, to 
R,,(O, 0, r )  as well) as the circulation is altered to the (2, y)-plane. The role of the 
outward motion is similar to  that ascribed, by Grant, to  the mixing jets; in his 
turbulent cylinder wake he found that R,,(O, 0, r )  was always positive and had a scale 
that was independent of y . t  However, there are a t  least three indications that the 
eddy structure is not as simple as implied above, all related to the fact that  the 
circulation in the double-roller eddy, as conceived by Grant, is confined almost 
entirely to  the (2, 2)-plane. Thus the motion at any position y within the eddy cannot 
provide backflow for the u- or w-motion at any other y. Firstly, this restriction implies 
that 

r m  r m  

J ~ Rll(O, 0, r )  dr  = J R3,(r, 0, 0) dr = 0, 
0 0 

which is not consistent with either the present results (obviously the autocorrelation 
of must have a non-zero integral scale) or those of Grant. Secondly, Rl,(O, 0, r )  

t For the reasons given in WF, potential-flow effects are smaller in wakes than in mixing layers. 
Briefly, the faster growth of a mixing layer means that a variation in the non-dimensional normal 
coordinate, 1 for a mixing layer, corresponds to a larger variation in y (which scales the potential 
correlations) for a mixing layer than it does for a wake. 
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and R,,(O, r ,  0) are always positive when both probes are in the potential flow, and 
the analysis of WF suggests that the turbulent regions supply some of the backflow 
for the potential u-motion. Thirdly, an eddy structure with only y-component 
vorticity cannot contribute directly to 

The large-eddy structure must be inclined, in the (2, y)-plane, as shown in figure 
21 (a), to extract energy from the mean flow efficiently. Assuming that the crossover 
point in Rss(r’, 0 , O )  is the radius of the average double-roller eddy gives a rough 
estimate of its streamwise scale as 096 from table 1. Note that the double-roller 
structure is consistent with the crossover point for R33(r’, 0 ,O) being the smallest of 
the three ‘streamwise’ correlations, but is not consistent with the negative region in 
Rll(r’, 0 , O )  for 7 = +0.018. This discrepancy could be due to the lack of simple 
superposition or to the inevitable low-wavenumber v-motion, which can contribute 
to the u-motion via the mean-velocity gradient, which is a maximum near 
7 = +0018. Obviously this ‘flapping’ motion could not be responsible for the 
negative region in R,,(O, 0, r), which occurs a t  lower values of r than the crossover 
point in table 1. For all 7, the backflow for w occurs at least partially along the x-axis ; 
near maximum y this is probably achieved by the alternative dispatch of ‘outward ’ 
fluid to the high- and low-velocity sides, as the turbulent eddies erupt into the 
potential flow. 

The effect of such an eruption on the potential flow is shown schematically in figure 
21 (b). Since the Rzz(O, 0, r )  results give no indication of spanwise periodicity in the 
large-eddy structure, an explanation in terms of one eddy alone is justified. In  the 
(x, y)-plane the eddy ‘pushes’ the potential flow away from the eddy centre, causing 
positive contributions to the potential R,,(O, 0, r )  and contributions to R,,(O, 0, r )  of 
opposite sign at an T depending on y. This is consistent with R,,(O, r ,  0) for the fixed 
probe in the high-intensity region, which is the largest of the normal correlations. 
The carresponding &3(O, r ,  0) is positive because the w-motion at the downstream 
edge of the eddy is away from the eddy centre, as is the potential motion. As the 
eddy moves downstream and/or decays, the potential motion moves inward to fill 
the gap, producing contributions to the correlations of the same sign as discussed 
above. Since the convection velocity of the large eddy is less than U,, it  represents 
a blockage to the potential flow. This causes positive contributions to the potential 
Rll(O, 0, r )  and Rll(O, r ,  0) both when the eddy is in the plane of interest, and the 
potential u is accelerated, and after the eddy has moved downstream and the 
potential flow decelerates. Illustration of this ‘blockage ’ effect on the potential 
motion is provided by Yule (1978, figure 11) and the study, by Van Atta et al. (1982), 
of potential flow above a turbulent spot in a laminar boundary layer. WF discuss 
the theoretical aspects of the potential flow by an extension of the analysis of Phillips 
( 1955). 

and so is not of primary importance. 

4.3. Correlation and large-eddy structures in wall effect (x = 75 mm) 
Firstly, we show that the changes in the correlations evident from figures 11-14 are 
indeed caused by wall effect and are not due to some peculiarity of the chosen 
measurement station. If only wall effect changes the correlations, then the only 
possibility for scaling the correlations, using Rl,(O, 0, r )  as an example, is 

(9) 

wheref denotes functional dependence and qW is the position of the wall in similarity 
coordinates. The results at 37 cm are for qw of sufficient magnitude to be negligible. 

Rl,(O, 0, r )  = f [ ~ / ( ~ - X o ) ,  77 7w17 
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FIQURE 22. Experimental test of (9); 71 = -0050. Analog results: 0,  no false floor; 0,  with false 
floor. Digital results from figure 1 1  : x , no false floor. 

Before the final measurements were started, (9) was tested by inserting a false floor, 
parallel to the wind-tunnel floor, to vary yW independently of 2. R,,(O, 0, r )  was 
measured using analog equipment and both these results and the later, digital results 
for r / ( x - x o )  = 0-30 and r] = -0050 are shown in figure 22 to support (9). 

Dimensionless scales of the normal correlations have increased at 75 cm, as can be 
seen in figure 15 for R,,(O, r ,  0) ; the other correlations are not presented. This increase 
is due largely to an increase in the TN contribution, as the ‘blockage’ effect is more 
pronounced at  75 cm, while the turbulent contributions have not altered 
significantly. 

The negative peak in R,,(O, 0, r )  (figure 1 1 )  has decreased in size to about -004, 
and the crossover point in both R,,(O, 0, r )  and R,,(O, 0, r )  (figure 14) has moved to 
larger r .  The change in the streamwise correlations reflects the change in the spectra 
(figures 5 and 6). Table 1 shows that values of r’ at the crossover points in all the 
measurements have increased by a factor of about two, which is more than could be 
plausibly attributed to a change in the convection velocity. These results are 
consistent with the proposed eddy structure of the unaffected flow (figure 21 a).  As 
the x- and z-scales of the double roller eddy are stretched by wall effect, the 
y-component vorticity is decreased. 

R,,(O, 0, T )  (figure 13) is no longer similar to R,,(O, 0, r )  and R,,(O, 0, r )  (figure 16b) 
has significantly increased for r] < -0-025. Figure 19 shows that all the contributions 
to both R,,(O, 0, r )  and R,,(O, 0, r )  have increased near the high-velocity edge. The 
increase in the total correlations at  r ]  = + 0025 (figure 20) and r] = - 0026 (the results 
are not shown) is due largely to the increased turbulent contribution. 

In summary, the double-roller component of the large-eddy structure has been 
weakened by the effect of the wall, and this presumably increases the importance of 
the outer motion. The scales of the (0, r,  0) correlations have increased, largely 
because of the increase in the TN contributions, while all the conditionally sampled 
spanwise measurements show an increase in the turbulent contribution. It is difficult 
to see how this could occur if the unaffected large-eddy structure was essentially 
two-dimensional, as suggested by e.g. Roshko (1976). 
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5. General discussion 
This paper is not intended as a treatment of empirical turbulence models, but the 

discussion below is applicable to turbulence models based on term-by-term modelling 
of the Reynolds-stress transport equations, and especially to the representation of 
wall effect, for which an extra correction term is needed in many models. 

With some knowledge of the large-eddy structure it is possible to explore further 
the behaviour of the normal stresses, in particular the change in dzZ across the whole 
layer for x-x,, > 50 cm. From the discussion of $4, this rise must be associated with 
the nature of the outward motion. We begin by showing that the behaviour of 2 can 
be explained plausibly in terms of the thin-shear-layer equations for the normal 
stresses and so is not due to any sort of upstream influence. These equations are 

a$i3 -au -au 7% a$iZ u-+ v-+uv-+u2-- p-+-+Eu = 0, ax % % ax dx % 

Summing these equations gives the turbulent-energy equation 
- a&- *2 -au - - a u  a -  - 

ax % * % %  
u-+ V-+uv-+(U2-WZ)-+-(pv+&%)+E = 0;  

that is 

ADVECTION + PRODUCTION + DIFFUSION + DISSIPATION = 0. 

Here E, is the u-component of the dissipation E ,  and similarly for E, and 8,. If the 
dissipation is isotropic then E, = E, = E, = %. The terms p h g / a x i ,  where p is the 
kinematic fluctuating pressure, are ‘redistribution’ terms, since they sum to zero by 
continuity. The balance of the terms, in mixing-layer similarity form, of (10d) is 
shown in figure 23 for the substantially self-preserving flow at 50cm and the 
wall-affected flow at 75 cm. The shear-stress values used were those calculated from 
the momentum equation and shown in figure 7, the approximation for & was the 
same as that used in V i ,  and the dissipation was found by difference. The normal-stress 
production was always less than 5 Yo of the shear-stress production for 7 < + 0.030, 
rising to 15 yo at 7 = +0*060 at 50 cm. The change in the total production with x is 
negligible. A t  50 cm the dissipation is in reasonable agreement with the relation 
E = lO(uV)$/6 mentioned in $3. While the agreement between the dissipation found 
by difference and that obtained from the inertial-subrange equation, (l) ,  is only fair 
at  both stations, the indicated decrease between the stations is in much better 
agreement. 

Some of the disagreement between the two methods of obtaining the dissipation 
can be attributed to the uncertainty in choosing a convection velocity. Taking 
U, = U(7 = 0) would give virtually no disagreement, while leaving the indicated 
decrease largely unaltered from that shown in figure 23. Thus, provided that the 
convection velocity has not significantly altered between 50 and 75 cm, the indicated 
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FIGURE 23. Balance of turbulent-energy equation. Solid lines, 2-zo (cm) = 4951 ; dashed lines, 
7506. Dissipation by difference at: 0 ,  z-zo (cm) = 4951; 0,75.06. Dissipation from ( 1 ) :  m, z-zo 
(cm) = 3689; 0 ,  75.06. 

decrease is probably more accurate than the actual values of dissipation a t  either 
station. 

Equation (1) is almost independent of the details of the low-wavenumber end of 
the spectrum and hence of the accuracy of (10d)  so this result implies that  (10d)  
describes the flow adequately, provided that the convection velocity is not signific- 
antly altered. Therefore it is unlikely that the rise in 3 is due to any significant 
upstream influence. 

Neither the diffusion terms in the equations for the normal stresses nor 3 a U l  ax, 
the direct production of 2, could produce a rise in $22 across the whole layer. This 
rise must be due to  the effect of the wall on the pressure field, since pressure 
disturbances are the only perturbations that can propagate vertically in a thin shear 
layer. The wall apparently alters the redistribution terms in (10); p&/ax:, which 
generally must be negative to produce a source for 2 and 3, decreases further and 
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this decrease is absorbed by m. The reduction in p&/dx in turn reduces the 
amount of u-component energy available for transfer to higher wavenumbers, causing 
E, to decrease but leaving the level of 2 largely unchanged. Apparently there is no 
corresponding rise in E ,  as p h / a j  increases, because the isotropic relation for the 
inertial subrange, a,,, @33 = wll, is only a slightly poorer fit to the data at 75 cm 
(figure 6) than at 37 cm (figure 5). All of E , ,  E, and 8, appear to have decreased by 
a similar amount, as would be expected if the dissipation was nearly isotropic, causing 
the ‘banking up’ of q522, and to a lesser extent of q511 and 433, around ki3 x 1 at 
7506  cm. To leave 2 largely unaltered while E ,  decreases, p&/& must decrease 
which also contributes to the rise in p h /  a j .  We reach the intriguing proposition that 
the redistribution terms, which eventually must transfer energy away from the 
normal component to accommodate the impermeability condition that V = v = 0 at 
the wall, may initially do the opposite in the present flow. In part 2 we show that 
v2 decreases after 100 cm. 

Figure 24 shows the balance of the terms in the shear-stress transport equation 

- 

that is 

MEAN TRANSPORT + GENERATION -k TURBULENT TRANS,PORT + PRESSURE-STRAIN = 0. 

Again the calculated values were used, @ was neglected, and the pressure-strain 
term was found by difference. As the wall becomes important the pressure-strain term 
increases, while the generation decreases, leaving the level of UV unaltered. 

Bradshaw & Koh (1981) show that the Poisson equation for the pressure can be 
written as 

where 

is the instantaneous rate of strain in the ( i ,  j)-plane and Q; is the instantaneous total 
vorticity. The positive contribution from E2 = Etj El$ arises from eddy ‘ collisions ’, 
that is, saddle points in the instantaneous stream-function pattern. The discussion 
of (10) and (11) implies that all components of F have been altered as the vertical 
motion moves to collide with its mirror image. This implication is consistent with the 
conclusion that the pressure-containing redistribution of normal stress and the 
pressure-strain terms are significantly altered by the wall. 

The behaviour of 2 as x increases is quite different from that of 3. The increase 
begins near the high-velocity edge and propagates inward, as suggested by the 
analyses of Hunt & Graham (1978) and WF, which indicate that the distance to the 
wall is the important new parameter. As was found by Thomas & Hancock (1978) 
in their measurements of grid turbulence near a moving wall, 2 is amplified 
considerably more than 3, both at constant x and varying 7, and at constant 7 and 
increasing x ,  and it does not matter whether the zonal contributions or the total 
mean-square intensities are considered. This disparity in amplification is in marked 
contrast to the theories of Hunt & Graham and WF, which predict equal amplification 
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FIGURE 24. Balance of shear stress equation. Solid lines, z-q, (crn) = 4951 ; dashed lines, 7506. 
Mean transport is not altered. 

of 2 and 3. In the present flow the reason for the disparity is simply that the large 
eddies are neither homogeneous in the x-direction (because of shear-layer growth) nor 
axisymmetric about the z-axis so that the streamwise motion will be preferentially 
amplified. In  the absence of correlation measurements, it is not possible to say 
whether the results of Thomas & Hancock are also due to this lack of axisymmetry. 
Since their 2, at constant non-dimensional distance from the wall, increased as x 
increased, it is possible that the usual streamwise decay of grid turbulence, which 
also was not included in the analysis of Hunt & Graham, was partially responsible 
for the unequal amplification. The large-eddy simulation of Biringen & Reynolds 
(1981)) which assumed vertical axisymmetry but not streamwise homogeneity, 
reproduced the increase in 2) with x, found by Thomas & Hancock. 
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6. Conclusions 
We have shown that significant changes in the structure of a turbulent mixing layer 

occur as i t  becomes influenced by a solid surface well before the turbulent region 
actually reaches the surface. At the same time the mean-velocity profile remains 
unaltered. 

With the exception of the rise in v-spectrum and the unequal amplification of 2 
and 3, the behaviour of the single-point measurements, such as 2, the flatness 
factors and V;, were explained in terms of the increasing level of fluctuations in the 
diminishing potential core. The correlation measurements in the unaffected flow 
showed that the scale of the turbulent contribution to the spanwise correlations did 
not vary significantly with 7, while the potential contribution to these correlations 
increased enormously as 7 became large and negative. 

There was a significant increase in all the spanwise scales as the flow became 
affected by the wall. All these results emphasize the essential three-dimensionality 
of the large-eddy structure in the unaffected flow. This structure appears to be a 
horseshoe vortex resulting from a combination of Grant’s double-roller eddy and an 
outward motion similar to his mixing jets. The inhomogeneity of the horseshoe vortex 
in the (2, y)-plane explains the unequal amplification of 2 and 2. 

The wall stretches the double-roller component in the (z, %)-plane and so weakens 
its y-direction vorticity, allowing the outer motion to become dominant. As the 
instantaneous mirror-image structure becomes important, the pressure field is 
altered, and it is suggested that this alteration is primarily responsible for the rise 
in 3 across the whole layer. To avoid significant image effects in single-stream mixing 
layers it is recommended that measurements be limited to the region where S/h .c 08 
approximately. 

Although the mean-velocity and shear-stress distributions in unperturbed mixing 
layers, and indeed in the present flow over the range of x studied here, can be easily 
computed using simple closure assumptions such as a constant eddy viscosity, the 
present results emphasize the complex response of the turbulence structure to a 
change in boundary conditions. In  particular, it appears that the first effect of the 
wall is to redistribute the turbulent energy between its components in the opposite 
direction to that occurring in fully developed wall layers, where the components in 
the plane of the wall are enhanced at the expense of the normal component. 

We note that similar, and perhaps even larger, changes will occur in a two-stream 
mixing layer confined by a tunnel roof as well as the floor. Such changes may be 
partially responsible for the large spanwise scales observed by Brown & Roshko (1974) 
and measured by Wygnanski et al. (1979). 

This work was funded by SRC Grants B/SR/8978.1 and B/RG/9011.2. We also 
thank Professor J. H. Ferziger, Dr R. D. Mehta and Dr A. J. Yule for their valuable 
comments during the course of this work, Messrs D. Abrahams, Muck Kin-Choong 
and P. N. Inman for their practical help with the data reduction, and Dr J. F Morrison 
for carrying out an independent check of the rise in 2. 
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Appendix. Intermittency scheme and two-point conditional sampling 
The intermittency scheme used is basically the ‘ signal-or-derivative ’ method 

described by Bradshaw & Murlis (1974), used by Castro (1973) and Murlis, Tsai & 
Bradshaw ( 1982) and developed further by Muck (1980). The flow is called ‘turbulent ’, 
and the intermittency function I ( t )  is set to  one if either lauv/atl or la2uv/dt21 is 
greater than the threshold values (0.25 or 0 3 0  respectively of the relevant turbulent 
zone average). These thresholds were found by Muck (1980) to give reasonable 
agreement with a tempcrature-based determination of I ( t )  over a range of flows. The 
basic problem in intermittency determination is the conflicting requirements of 
reducing signal ‘aropouts’ within what is believed to  be genuine turbulence, while 
retaining details of the interface, whose frequency scale cannot be more than an order 
of magnitude smaller than the Kolmogorov frequency wK = ( s /v )k  The bulk of the 
conditionally sampled results were obtained from the two-point measurements, which 
were digitized a t  a real-time rate of 8 kHz per channel. For signal-or-derivative 
methods Muck (1980) recommends the use of a small ‘hold time’, over which I ( t )  is 
not allowed to vary, to  obtain the best compromise between the two conflicting 
requirements mentioned above. The hold time At used in the present experiment was 
two digital time increments, and was in the range 0 0 8  2 U,At/S 2 0013, with the 
upper limit occurring a t  the first measurement station (24 cm) where WKAt X 6;  WKAt 
increased with increasing 2. For fuller details the reader is referred to the papers cited 
a t  the beginning of this appendix and to  Wood (1980, chap. 3). It is sufficient to note 
here that the present scheme would have to  be glaringly inaccurate to invalidate the 
main conclusions based on the conditionally-sampled correlation measurements in $4. 

The single-point results, digitized a t  20 kHz real time per channel, were obtained 
using the same basic intermittency scheme and therefore using a correspondingly 
smaller hold time. 

The use of turbulent-zone averages in the intermittency scheme needs threshold 
estimates to  start the run, and meant that  the scheme could not be used near the 
extreme edge of the mixing layer. The practical limit was found to be 7 x -0075, 
and even here care had to be taken. The scatter in figure 19 is due largely to the poor 
choice of starting thresholds, but the rest of the results are not significantly affected 
by the starting thresholds used. 

The single-point program computed zone averages relative to  the conventional 
mean, which allows the addition law 

(A 1 )  
- 
6 = 78, + (1  -7 )  8 N  

to  be applied to any quantity 6(t). The overbars denote time averages, y = I(t) is the 
intermittency factor and the subscripts T and N denote turbulent and non-turbulent 
zones respectively. The addition law (A 1)  was first used by Dean & Bradshaw (1976), 
who state some of its advantages over the more complex conditional-sampling 
relationships used by Kovasznay, Kibens t Blackwelder (1970) and Hedley & Keffer 
(1974) among others. As shown by the discussion of the flatness factors and 
turbulent-energy transport velocity in $3, (A 1 )  allows a simple explanation of the 
results. 

For the two-point measurements, denoting the fixed probe as A and the moving 
probe as B ,  the addition law is 
- - 
8 ~ 8 ~  = Y A B ( ~ A  @B )TT + ( 1 - Y A  - Y B  + Y A B )  ( e A ) N N  + ( Y A  - Y A B )  (eA)m - 

+ ( Y E - Y A B )  ( ~ A ~ E ) N T ,  (A 2) 
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where Y A B  = I A ( t ) I B ( t )  and the remainder of the first term on the right-hand side 
is the product of O,(t) and O,(t) averaged over the times when both A and B are 
turbulent (and IA( t )  = I B ( t )  = 1). The meaning of the other terms should be clear; 
note that the first subscript (N or T) always refers to point A. Equation (A 2 )  reduces 
to (A 1 )  if A = B and OA = dB,  since 12(t) = I ( t )  or yAA = y .  

In  this paper the correlations, denoted R,,, are normalized so that R, = 1 at r = 0. 

Thus 

- -  

The major reason for using this definition is that small calibration errors cancel from 
(A 3). The direction of separation is not specified here. In this paper the correlations 
are denoted by R,,, *ith a parenthesis denoting the components of the separation 
vector. 

Now the single-point addition law (A 1) does not apply to terms like-, where 
m, n > 0, nor does the two-point addition law apply to R, as defined by (A 3). 
Equation (A 2) was applied to the numerator of R, only, which is the covariance. 
To show how this was done we start with the equation for the product of the total 
velocities at A and B ( 0, = U, + u,(t) and = U, + u,(t) respectively) and drop the 
subscripts A and B. It is 

ot(d) oj@) = {IAAt)  [ui+ul(t)l+ L1 - l A ( t ) l  [ U i + u i ( t ) l )  

{ l B ( t )  l U j  + u j ( t ) l  + L1 - I B ( t ) l  LUj +uj(t)ll* (A 4) 

On time averaging, the term containing Y A B  becomes 

YAB[U6 uj + ut( uj, T T -  u j )  + uj( ut, TT- ui) f Gj, T T I ,  

so the turbulent/turbulent (TT) contribution to G, which is Y A B  G, TT (see (A 2)), 
was found after Ut, Uj ,  Ut,  TT and U,, TT were computed independently using 

I A ( ~ )  I s ( t )  Uiuj = Y A B  u&uj, TT- uj) 

and similar relations. The other terms in (A 2) for 8, = Ui and 8, = U, were found 
from (A 4) in a similar manner. Dividing through by the denominator in (A 3) gives 
the contributiom to R ,  : 

Rtj = R ~ T ~ T  + R m j ~  + R f T j N  + R t N j T ,  (A 5 )  

- _ _ _  where 
R ~ T ~ T  = Y A B ( G G ) T T / ( u ~ .  A u j ,  A u i ,  B u j ,  B)'? 

R i ~ j l ~  = ( ~ - Y A  - Y E  + Y A B )  ( ~ I u ~ ) N N / ( u ~ ,  A U ~ ,  A ut, B uj, B ) f ,  

and similarly for the other terms, as defined by this procedure. As the probe 
separation decreaaes, the TT and non-turbulent/non-turbulent (NN) contributions 
must asymptote to the single-point results for probe A. The results for probe A are 
plotted in $4 and serve as a check on the accuracy of the two-point conditional- 
sampling routines, but obviously not on the accuracy of intermittency determination. 
As the probe separation decreases, the turbulent/non-turbulent (TN) and NT 
contributions asymptote to zero as can be seen by comparing (A 1) and (A 2). The 

- 
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correlation of the intermittency functions 

waa also computed. Equation (A 6) has the same form as (A 3) and is 1 if I A ( t )  = IB( t )  
and zero if IA( t )  and I E ( t )  are uncorrelated. The definition of R,, is the same as that 
used by Kovasznay et al. (1970). 
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